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Abstract—We take an analytical approach to study Quality of
user Experience (QoE) for media streaming applications. We use
the fact that random linear network coding applied to blocks
of video frames can significantly simplify the packet requests
at the network layer and avoid duplicate packet reception. We
model the receiver’s buffer as a queue with Poisson arrivals
and deterministic departures. We consider the probability of
interruption in video playback (buffer underflow) as well as the
number of initially buffered packets (initial waiting time) as the
QoE metrics. We explicitly characterize the optimal trade-off
between these metrics by providing upper and lower bounds on
the minimum initial buffering required to achieve certain level
of interruption probability for different regimes of the system
parameters. Our bounds are asymptotically tight as the file size
goes to infinity. Further, we show that for arrival rates slightly
larger than the play rate, the minimum initial buffering remains
bounded as the file size grows. This is not the case when the
arrival rate and the play rate match.

I. INTRODUCTION

Peer-to-peer networks (P2P) are a fast-growing means of

video delivery. It has been estimated that between 35-90%

of Internet bandwidth is consumed by P2P applications [1],

[2]. Today, P2P file-sharing networks are seeing a drop in

popularity [3], but the original file sharing ideas are being

used for video streaming in networks such as PPLive [4]

and QQLive [5]. As smart phones become the medium of

choice for Internet media access, P2P video distribution over

the wireless medium is likely to gain significance.

P2P video streaming is generally accomplished by dividing

the video file into blocks, which are then further divided into

packets for transmission. After each block is received, it can

be played out by the receiver. In order to ensure smooth

sequential playback, a fresh block must be received before

the current block has been played. If such a fresh block is

not available the playback freezes, causing a negative user

experience. Blocks may be buffered in advance of playing out

in order to provide a level of protection against a playback

freeze, with more initial buffering providing a lower likelihood

of playback interruption. Hence, there is a trade-off between

the initial waiting time and playback interruptions.

In this paper, our main objective is to characterize the

amount of buffering needed for a target probability of playback

interruption over the duration of the video. We consider a

model in which network coding is used across the packets of
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each block. A wireless user can obtain coded packets from

multiple sources (other users and servers). However, since

the wireless channel is unreliable, packets cannot be obtained

deterministically. Thus, our question is how much should we
buffer prior to playback in order to account for wireless
channel variations?

We first show how to model the receiver’s buffer as an

M/D/1 queue. We then provide upper and lower bounds on

the minimum initial buffering required so that the playback

interruption probability is below a desired level. The optimal

trade-off between the initial buffering and the interruption

probability depends on the file size as well as the arrival rate of

the packets as compared to the playback rate. We show that

our bounds are asymptotically tight as the file size goes to

infinity. Moreover, if the arrival rate is slightly larger than the

play rate, the minimum initial buffering for a given interruption

probability remains bounded as the file size grows. However,

when the arrival rate and the play rate match, the minimum

initial buffer size grows as the square-root of the file size.

There is significant work in the space of P2P streaming.

Close to our work, [6], [7], [8], [9] develop analytical models

on the trade-off between the steady state probability of miss-

ing a block, and buffer size under different block selection

policies for live streaming in a full mesh P2P network with

deterministic channels. A further modification is to use random

linear network coding techniques [10] to make block selection

simpler [11], [12], [13], [14] in the wired and wireless context.

In contrast, we focus on a very different scenario of streaming

of pre-prepared content over unreliable wireless channels using

network coding. Further, our analysis is on transient effects—

we are interested in the first time that video playback is

interrupted as a function of the initial amount of buffering.

II. SYSTEM OVERVIEW

We consider a media streaming system as follows. Media

files are usually divided into blocks consisting of multiple

frames. The video coding is such that all the frames in the

block need to be available before any frames can be played.

Blocks are requested in sequence by the playback application

from the user-end. The server (or other peers) packetize the

requested block and transmit them to the user as in Figure

1. Obtaining the packets of a block from various peers in

a P2P system requires the receiver to keep track of missing

packets in a block, and request them from different peers.

However, since packet transmission is unreliable in a wireless

context, requesting each packet from only one peer might
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cause unreasonable delays, while requesting a particular packet

from multiple peers can result in inefficient resource usage.

Application Application
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Media
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Fig. 1. The media player (application layer) requires complete blocks. At
the network layer each block is divided into packets and delivered.

Random linear codes can be used to alleviate such ineffi-

ciencies. Here, instead of requesting a particular packet from

block i, the receiver simply requests a degree of freedom of

block i. The server in turn responds with a random linear

combination of all packets that it has in block i. The coeffi-

cients of each combination are chosen uniformly at random

from a Galois field of size q. The coded packets delivered

to the receiver can be thought of as linear equations, where

the unknowns are the original packets in block i. Block i can

be fully recovered by solving a system of linear equations

if it is full rank. It can be shown that if the field size q
is large enough, the received linear equations are linearly

independent with very high probability [10]. Therefore, for

recovering a block of W packets, it is sufficient to receive

W coded packets from different servers. In a P2P system,

it is unlikely that a randomly contacted peer would have all

packets corresponding to a particular block. However, storing

blocks in a random linear coded fashion at all peers ensures

that with high probability, the selected peer has a new degree

of freedom to offer (see [13] for further discussion). Thus, each

received coded packet is likely to be independent of previous

ones with probability 1− δ(q), where δ(q)→ 0 as q →∞.

Note that such random linear coding does not introduce

additional decoding delay for each block, since the frames

in a block can only be played out when the whole block

is received. So there is no difference in delay whether the

end-user received W uncoded packets of the block or W
independent coded packets that can then be decoded.

III. SYSTEM MODEL AND QOE METRICS

Consider a single user receiving a media file from various

peers it is connected to. Each peer could be a wireless access

point or another wireless user operating as a server. We assume

that the video file consists of T packets that are divided

into blocks of W packets. Each server sends random linear

combinations of the packets within the current block to the

receiver. We assume that the linear combination coefficients

are selected from a Galois field of size q. We assume the

block size W is small compared to the total length of the file,

but large enough to ignore the boundary effects of moving

from one block to the next. Time is continuous, and the

arrival process of packets from each peer is a Poisson process

independent of other arrival processes. Since no redundant

packet is delivered from different peers, we can combine the

arrival processes into one Poisson process of rate Rs. We

assume that each received coded packet is linearly independent

from the previous ones with probability 1− δ(q). Hence, the

effective arrival process of useful packets is Poisson with rate

R = Rs(1−δ(q)). Note that R approaches Rs for large enough

field size. We normalize the playback rate to one, i.e., it takes

one unit of time to play a single packet. Thus, our simplified

model is just a single-server-single-receiver system. We also

assume that the parameter R is known at the receiver, which

first buffers D packets from the beginning of the file, and then

starts the playback.

The presence of some packets in the buffer does not

guarantee that there will be no interruption since we require

W packets corresponding to a block before it can be decoded

and played out. However, if there are at least W packets in

the buffer, there is at least one playable packet. This is so

since either the first W packets in the buffer belong to the

same block, or they belong to two different blocks. In the

former case, the packets of the block can be decoded, and

in the latter case, the first block of the two must be already

decoded; otherwise, the next block would not be sent from

the server. Therefore, the dynamics of the receiver’s buffer

size Q(t) can be described as follows

Q(t) = D +A(t)− t, (1)

where D is the initial buffer size and A(t) is a Poisson process

of rate R. We declare an interruption in playback when the

buffer size decreases to the threshold W . For simplicity of

notation, we assume that an extra block is initially buffered

(not taken into account in D). Hence, we can declare an

interruption in playback when the buffer size reaches zero

before reaching the end of the file. More precisely, let

τe = inf{t : Q(t) ≤ 0}, τf = inf{t : Q(t) ≥ T − t}, (2)

where τf corresponds to time of completing the file download,

because we have already played τf packets and the buffer

contains the remaining T −τf packets to be played. The video

streaming is interrupted if and only if τe < τf .

We consider the following metrics to quantify Quality of

user Experience (QoE). The first metric is the initial waiting

time before the playback starts. This is directly captured by

the initial buffer size D. Another metric that affects QoE is

the probability of interruption during the playback denoted by

p(D) = Pr{τe < τf}, (3)

where τe and τf are defined in (2). In our model, the user

expects to have an interruption-free experience with proba-

bility higher than a desired level 1 − ε. Note that there is

a fundamental trade-off between the interruption probability

ε and the initial buffer size D. For example, owing to the

randomness of the arrival process, in order to have zero

probability of interruption, it is necessary to fully download

the file, i.e., D = T . Nevertheless, we need to buffer only a

small fraction of the file if user tolerates a positive probability

of interruption. These trade-offs and their relation to system

parameters R and T are addressed in the following section.

ISIT 2010, Austin, Texas, U.S.A., June 13 - 18, 2010

1779



IV. OPTIMAL QOE TRADE-OFFS

We would like to obtain the smallest initial buffer size so

that the interruption probability is below a desired level ε,
which is denoted by

D∗(ε) = min{D ≥ 0 : p(D) ≤ ε}, (4)

where p(D) is the interruption probability defined in (3). Note

that in general p(D) and hence D∗(ε) depend on the arrival

rate R and the file size T which are assumed to to be known

and constant. In the following we characterize the optimal

trade-off between the initial buffer size and the interruption

probability by providing bounds on D∗(ε). An upper bound

(achievability) on D∗(ε) is particularly useful, since it provides

a sufficient condition for desirable user experience. A lower

bound (converse) of D∗(ε) provides a necessary condition on

the initial buffer size for a desirable level ε of interruption

probability. Let us first introduce some useful lemmas.

Lemma 1. Let X(t) = e−rQ(t), where Q(t) is given by (1),
and define

γ(r) = r +R(e−r − 1). (5)

Then for every r ≥ 0 such that γ(r) ≥ 0, X(t) is a
sub-martingale with respect to the canonical filtration Ft =
σ(X(s), 0 ≤ s ≤ t), i.e., the smallest σ-field containing the
history of the stochastic process X up to time t.

Proof: For every t, |X(t)| ≤ 1. Hence, X(t) is uniformly

integrable. It remains to show that for every t ≥ 0 and h > 0,

E[X(t+ h)|Ft] ≥ X(t) a.s. (6)

The left-hand side of (6) can be expressed as

E[X(t+ h)|Ft] = E
[
e−r(Q(t+h)−Q(t))

∣∣∣Ft

]
X(t)

= E
[
e−r(A(t+h)−A(t))

∣∣∣Ft

]
erhX(t)

(a)
= E

[
e−rA(h)

]
erhX(t)

(b)
= eh(r+R(e−r−1))X(t) = ehγ(r)X(t),

where (a) follows from independent increment property of the

Poisson process, and (b) follows from the fact that A(t) is a

Poisson random variable. Now, it is immediate to verify (6)

for any r with γ(r) ≥ 0.
Next, we use Doob’s maximal inequality [15] to bound the

interruption probability.

Lemma 2. Let p(D) be the interruption probability defined
in (3), and γ(r) be given by (5). Then, for any r ≥ 0 with
γ(r) ≥ 0

p(D) ≤ e−rD+Tγ(r), for all D,T,R ≥ 0. (7)

Proof: By definition of p(D) in (3), we have

p(D) = Pr{τe < τf}
≤ Pr{τe ≤ T} = Pr

{
inf

0≤t≤T
Q(t) ≤ 0

}

= Pr
{

sup
0≤t≤T

e−rQ(t) ≥ 1
}

(a)

≤ E[e−rQ(T )] = E[e−r(D+A(T )−T )]

= e−r(D−T )eRT (e−r−1) = e−rD+Tγ(r),

where (a) holds by applying Doob’s maximal inequality [15]

to the non-negative sub-martingale X(t) = e−rQ(t). Note that

X(t) is a sub-martingale for all r with γ(r) ≥ 0 by Lemma

1.

Lemma 3. Let γ(r) be as defined in (5). Define r̄(R) as the
largest root of γ(r), i.e.,

r̄(R) = sup{r : γ(r) = 0}. (8)

The following relations hold:

r̄(R) = 0, if 0 ≤ R ≤ 1, (9)

2(R− 1)

R
≤ r̄(R) ≤ 2(R− 1), if 1 ≤ R ≤ 2, (10)

R− 1 ≤ r̄(R) ≤ R ≤ 2(R− 1), if R ≥ 2. (11)

Proof: We omit the proof for brevity. See [16].

Next, we provide sufficient conditions on the initial buffer

size to avoid interruptions with high probability for different

regimes of the arrival rate.

Theorem 1. [Achievability] Let D∗(ε) be defined as in (4),
and r̄(R) be given by (8). Then

(a) For all R > 1,

D∗(ε) ≤ 1

r̄(R)
log

(1
ε

)
. (12)

(b) For all 0 ≤ R ≤ 1 +
(

1
2T log

(
1
ε

)) 1
2

,

D∗(ε) ≤ min
{ 1

r̄(R)
log

(1
ε

)
,

T (1−R) +
(
2TR log

(1
ε

)) 1
2
}
. (13)

Proof: First, note that for any upper bound p̄(D) of the

interruption probability p(D), any feasible solution of

D̄(ε) = min{D ≥ 0 : p̄(D) ≤ ε} (14)

provides an upper bound on D∗(ε). This is so since the optimal

solution of the above problem is feasible in the minimization

problem (4). If the problem in (14) is infeasible, we use the

convention D̄(ε) =∞, which is a trivial bound on D∗(ε). The

rest of the proof involves finding the tightest bounds on p(D)
and solving (14).

Part (a): By Lemma 2, for r = r̄(R), we can write

p(D) ≤ p̄a(D) = e−r̄(R)D, for all D,T,R ≥ 0.

Solving p̄a(D) = ε for D gives the result of part (a). Since

r̄(R) = 0 for R ≤ 1 (cf. Lemma 3), this bound is not useful

in that range.

Part (b): First, we claim that for all D ≥ T (1−R+ r̄(R)),

p(D) ≤ p̄b(D) = e−
1
2TRz2

,

where z = 1 − 1
R

(
1 − D

T

)
. We use Lemma 2 with r = r∗ =

− log
(
1
R

(
1 − D

T

))
to prove the claim. Note that r∗ ≥ 0,
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because D ≥ T (1 − R). In order to verify the second

hypothesis of Lemma 2, consider the following

R(e−r∗ − e−r̄(R)) = r̄(R) +R(e−r∗ − 1)− γ(r̄(R))

(a)
= r̄(R)−R+ (1− D

T
)

(b)
=

1

T

[
T (1−R+ r̄(R))−D

] (c)

≤ 0,

where (a) and (b) follow from the definition of r̄(R) and r∗,
respectively, and (c) holds by the hypothesis of the claim.

Thus, r∗ ≥ r̄(R). Using the facts that r̄(R) is the largest

root of γ(r), and γ(r) → +∞ as r → ∞, we conclude that

γ(r∗) ≥ 0. Now, we apply Lemma 2 to get

p(D) ≤ e−r∗D+Tγ(r∗)

(a)
= eTR

(
1
R (1−D

T )r∗−(1−e−r∗ )
)

(b)
= eTR

(
−(1−z) log(1−z)−z

)
(c)

≤ e−
1
2TRz2

,

where (a) and (b) follow from the definition of γ(r) and z.

We skip the proof of (c) for brevity (cf. Appendix of [16]).

Therefore, the claim holds.

Now, let D̄ = T (1−R)+
(
2TR log

(
1
ε

)) 1
2

. Using the claim

that we just proved, we may verify that p(D̄) ≤ p̄b(D̄) = ε,
if D̄ ≥ T (1−R+ r̄(R)). In order to check the hypothesis of

the claim, note that for R ≤ 1, r̄(R) = 0 (cf. Lemma 3), and

for all 1 ≤ R ≤ 1 +
(

1
2T log

(
1
ε

)) 1
2

, we have

D̄ − T (1−R) =
(
2TR log

(1
ε

)) 1
2

≥ 2T
( 1

2T
log

(1
ε

)) 1
2

(d)

≥ 2T (R− 1)
(e)

≥ T r̄(R),

where inequality (d) follows from the hypothesis of Part (b),

and inequality (e) is true by Lemma 3. Therefore, D∗(ε) ≤ D̄

for all R ≤ 1 +
(

1
2T log

(
1
ε

)) 1
2

. Note that, the upper bound

that we obtained in Part (a) is also valid for all R. Hence, the

minimum of the two gives the tightest bound.

When the arrival rate R is smaller than one (the playback

rate), the upper bound in Theorem 1 consists of two com-

ponents. The first term, T (1− R), compensates the expected

number of packets that are required by the end of [0, T ] period.

The second component,
(
2TR log

(
1
ε

)) 1
2

, compensates the

randomness of the arrivals to avoid interruptions with high

probability. Note that this term increases by decreasing the

maximum allowed interruption probability, and it would be

zero for a deterministic arrival process. For the case when

the arrival rate is larger than the playback rate, the minimum

required buffer size does not grow with the file size. By

continuity of the probability measure, we can show that the

upper bound in Theorem 1 remains bounded for infinite file

sizes. This is so since the buffer size in (1) has a positive

drift. Hence, if there is no interruption at the beginning of the

playback period, it becomes more unlikely to happen later.

In the following, we show that the upper bounds presented

in Theorem 1 are asymptotically tight, by providing lower

bounds on the minimum required buffer size D∗(ε), for

different regimes of the arrival rate R. Let us first define the

notion of a tight bound.

Definition 1. Let D̂ be a lower or upper bound of the

minimum buffer size D∗(ε) that depends on the file size T .

The bound D̂ is an asymptotically tight bound if
|D̂−D∗(ε)|

D∗(ε)
vanishes as T goes to infinity.

Theorem 2. [Converse] Let D∗(ε) be defined as in (4), and
r̄(R) be given by (8). Then

(a) For all R > 1,

D∗(ε) ≥ − 1

r̄(R)
log

(
ε+ 2e−

(R−1)2

4(R+1)
T
)
. (15)

(b) For each R ≤ 1 and ε ≤ 1
16 , if T ≥ C log

(
1
ε

)
then

D∗(ε) ≥ T (1−R) +
1

2

(
2TR log

(1
ε

)) 1
2

, (16)

where C is a constant that only depends on R.

Proof: We only sketch the proof of part (a) owing to

space limitation (cf. [16] for a complete proof). Using a similar

argument as in the proof of Theorem 1, it is sufficient to

provide a lower bound on p(D) defined in (3). Define τB
as the first time that Q(t) crosses a threshold B. We have

p(D) = Pr{τe < τf} ≥ Pr{τe < min(τB , T −B)}. (17)

By Doob’s optional stopping theorem for a properly defined

martingale, the right-hand side of (17) is bounded below by

e−r̄(R)D − e−r̄(R)B −Pr{0 ≤ Q(T −B) ≤ B}. (18)

Now, we choose B proportional to T such that both of the

second and third terms of (18) are bounded by e−
(R−1)2

4(R+1)
T

.

The result in (15) follows immediately from this.
Note that the result in part (b) of Theorem 2 does not hold

for all ε. In fact, we can show that D∗(ε) < T (1 − R)
for a large interruption probability ε. In the extreme case

ε = 1, it is clear that D∗(ε) = 0. Nevertheless, since we

are interested in avoiding interruptions, we do not study this

regime of the interruption probabilities. Comparing the lower

bounds obtained in Theorem 2 with the upper bounds obtained

in Theorem 1, we observe that they demonstrate a similar

behavior as a function of the parameters T and R. Now, we

can show that the obtained bounds are asymptotically tight.

Corollary 1. The upper bounds and lower bounds of D∗(ε)
given by Theorems 1 and 2 are asymptotically tight, if R > 1,
or R < 1 and ε ≤ 1

16 .

Proof: Let Dl and Du be lower and upper bounds of

D∗(ε), respectively. By Definition 1, for Dl or Du to be

asymptotically tight, it is sufficient to show Du−Dl

Dl
goes to

zero as T grows. We may verify this claim by using the upper

and lower bounds presented in Theorem 1 and Theorem 2,

and taking the limit as T goes to infinity.
Next, we numerically obtain the optimal trade-off curve

between the interruption probability and initial buffer size, and

compare the results with the bounds derived earlier.
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V. NUMERICAL RESULTS

We use MATLAB simulations to compute the minimum

initial buffer size D∗(ε) for a given interruption probability ε in

various scenarios. We start from a small initial buffer size D,

and for each D we compute the interruption probability p(D)
via Monte-Carlo method. We increase D until the constraint

p(D) ≤ ε is satisfied. Since p(D) is monotonically decreasing

in D, this gives the minimum required buffer size. Here, we

restrict D to take only integer values, and round each upper

bound value up to the nearest integer, and each lower bound

value down to the nearest integer.
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Fig. 2. The minimum buffer size D∗(ε) as a function of the interruption
probability.

Figure 2 shows the minimum required buffer size D∗(ε)
as well as the upper and lower bounds given by Theorems

1 and 2 as a function of 1
ε , where the arrival rate is fixed

to R = 1.2 and the file size T = 500. We observe that

the numerically computed trade-off curve closely matches our

analytical results.
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Fig. 3. The minimum buffer size D∗(ε) as a function of the arrival rate R.

Figure 3 plots the minimum required buffer size D∗(ε) as

well as the upper and lower bounds given by Theorems 1

and 2 versus the arrival rate R, where ε = 10−2 and the file

size is fixed to T = 103. Note that when the arrival rate is

almost equal or less than the playback rate, increasing the

arrival rate can significantly reduce the initial buffering delay.

However, for larger arrival rates D∗(ε) is small enough such

that increasing R does not help anymore.

VI. CONCLUSIONS

In this paper, we studied the problem of media streaming

with focus on the trade-offs between the two QoE metrics—

probability of interruption in media playback, and the initial

waiting time before starting the playback. In our system, the

user can receive packets of the media stream from multiple

sources by requesting packets in each block of the file. We

used the fact that sending random linear combinations of the

packets within each block of the media file simplifies the

packet selection strategies of P2P systems. This fact allowed

us to describe the receiver’s buffer dynamics as an M/D/1

queue, and explicitly characterize the trade-off between the

QoE metrics for different ranges of the system parameters.

We observed that the minimum initial buffer size to attain a

desired level of interruption probability remains bounded as

the file size grows if the arrival rate is slightly larger than the

play rate. Further, when the arrival rate and the play rate match,

the initial buffer size needs to scale as the square root of the

file size to account for randomness of the arrivals. Finally, our

numerical results confirmed that the optimal trade-off curves

demonstrate a similar behavior to that predicted by our bounds.
This work is the first step in analytical characterization of

QoE trade-offs in wireless media streaming applications. An

interesting extension to this work would be to obtain optimal

resource allocation policies to satisfy users who have different

interruption probability and initial waiting time targets.
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